3.2.64 \(\int \frac {\cos (c+d x)}{(a+a \sec (c+d x))^{5/3}} \, dx\) [164]

Optimal. Leaf size=90 \[ \frac {3 \sqrt {2} F_1\left (-\frac {7}{6};\frac {1}{2},2;-\frac {1}{6};\frac {1}{2} (1+\sec (c+d x)),1+\sec (c+d x)\right ) \tan (c+d x)}{7 a d \sqrt {1-\sec (c+d x)} (1+\sec (c+d x)) (a+a \sec (c+d x))^{2/3}} \]

[Out]

3/7*AppellF1(-7/6,2,1/2,-1/6,1+sec(d*x+c),1/2+1/2*sec(d*x+c))*2^(1/2)*tan(d*x+c)/a/d/(1+sec(d*x+c))/(a+a*sec(d
*x+c))^(2/3)/(1-sec(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 90, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3913, 3912, 141} \begin {gather*} \frac {3 \sqrt {2} \tan (c+d x) F_1\left (-\frac {7}{6};\frac {1}{2},2;-\frac {1}{6};\frac {1}{2} (\sec (c+d x)+1),\sec (c+d x)+1\right )}{7 a d \sqrt {1-\sec (c+d x)} (\sec (c+d x)+1) (a \sec (c+d x)+a)^{2/3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]/(a + a*Sec[c + d*x])^(5/3),x]

[Out]

(3*Sqrt[2]*AppellF1[-7/6, 1/2, 2, -1/6, (1 + Sec[c + d*x])/2, 1 + Sec[c + d*x]]*Tan[c + d*x])/(7*a*d*Sqrt[1 -
Sec[c + d*x]]*(1 + Sec[c + d*x])*(a + a*Sec[c + d*x])^(2/3))

Rule 141

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[(b*e - a*f
)^p*((a + b*x)^(m + 1)/(b^(p + 1)*(m + 1)*(b/(b*c - a*d))^n))*AppellF1[m + 1, -n, -p, m + 2, (-d)*((a + b*x)/(
b*c - a*d)), (-f)*((a + b*x)/(b*e - a*f))], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] &&  !IntegerQ[m] &&  !Int
egerQ[n] && IntegerQ[p] && GtQ[b/(b*c - a*d), 0] &&  !(GtQ[d/(d*a - c*b), 0] && SimplerQ[c + d*x, a + b*x])

Rule 3912

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Dist[a^2*d
*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[a - b*Csc[e + f*x]])), Subst[Int[(d*x)^(n - 1)*((a + b*x)^(m -
 1/2)/Sqrt[a - b*x]), x], x, Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !In
tegerQ[m] && GtQ[a, 0]

Rule 3913

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Dist[a^Int
Part[m]*((a + b*Csc[e + f*x])^FracPart[m]/(1 + (b/a)*Csc[e + f*x])^FracPart[m]), Int[(1 + (b/a)*Csc[e + f*x])^
m*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[m] &&  !GtQ
[a, 0]

Rubi steps

\begin {align*} \int \frac {\cos (c+d x)}{(a+a \sec (c+d x))^{5/3}} \, dx &=\frac {(1+\sec (c+d x))^{2/3} \int \frac {\cos (c+d x)}{(1+\sec (c+d x))^{5/3}} \, dx}{a (a+a \sec (c+d x))^{2/3}}\\ &=-\frac {\left (\sqrt [6]{1+\sec (c+d x)} \tan (c+d x)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x} x^2 (1+x)^{13/6}} \, dx,x,\sec (c+d x)\right )}{a d \sqrt {1-\sec (c+d x)} (a+a \sec (c+d x))^{2/3}}\\ &=\frac {3 \sqrt {2} F_1\left (-\frac {7}{6};\frac {1}{2},2;-\frac {1}{6};\frac {1}{2} (1+\sec (c+d x)),1+\sec (c+d x)\right ) \tan (c+d x)}{7 a d \sqrt {1-\sec (c+d x)} (1+\sec (c+d x)) (a+a \sec (c+d x))^{2/3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(3011\) vs. \(2(90)=180\).
time = 16.11, size = 3011, normalized size = 33.46 \begin {gather*} \text {Result too large to show} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[Cos[c + d*x]/(a + a*Sec[c + d*x])^(5/3),x]

[Out]

(((1 + Cos[c + d*x])*Sec[c + d*x])^(1/3)*(1 + Sec[c + d*x])^(5/3)*((-48*Sin[c + d*x])/7 + (51*Tan[(c + d*x)/2]
)/7 - (3*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/14))/(d*(a*(1 + Sec[c + d*x]))^(5/3)) - (5*2^(1/3)*(1 + Sec[c +
d*x])^(5/3)*((-30*(1 + Sec[c + d*x])^(1/3))/7 + (55*Cos[c + d*x]*(1 + Sec[c + d*x])^(1/3))/7)*Tan[(c + d*x)/2]
*((-11*AppellF1[3/2, 1/3, 1, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Tan[(c + d*x)/2]^2)/(Cos[c + d*x]*S
ec[(c + d*x)/2]^2)^(2/3) + 9*Cos[(c + d*x)/2]^2*(-11 - AppellF1[1/2, 1/3, 1, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c
+ d*x)/2]^2]/((-1 + Tan[(c + d*x)/2]^2)*(AppellF1[1/2, 1/3, 1, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] +
 (2*(-3*AppellF1[3/2, 1/3, 2, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + AppellF1[3/2, 4/3, 1, 5/2, Tan[(
c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])*Tan[(c + d*x)/2]^2)/9)))))/(63*d*(Cos[(c + d*x)/2]^2*Sec[c + d*x])^(2/3)*
(a*(1 + Sec[c + d*x]))^(5/3)*((-5*Sec[(c + d*x)/2]^2*((-11*AppellF1[3/2, 1/3, 1, 5/2, Tan[(c + d*x)/2]^2, -Tan
[(c + d*x)/2]^2]*Tan[(c + d*x)/2]^2)/(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^(2/3) + 9*Cos[(c + d*x)/2]^2*(-11 - App
ellF1[1/2, 1/3, 1, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]/((-1 + Tan[(c + d*x)/2]^2)*(AppellF1[1/2, 1/3
, 1, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + (2*(-3*AppellF1[3/2, 1/3, 2, 5/2, Tan[(c + d*x)/2]^2, -Ta
n[(c + d*x)/2]^2] + AppellF1[3/2, 4/3, 1, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])*Tan[(c + d*x)/2]^2)/9
)))))/(63*2^(2/3)*(Cos[(c + d*x)/2]^2*Sec[c + d*x])^(2/3)) - (5*2^(1/3)*Tan[(c + d*x)/2]*((-11*AppellF1[3/2, 1
/3, 1, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/(Cos[c + d*x]*Sec[(c
 + d*x)/2]^2)^(2/3) - (11*Tan[(c + d*x)/2]^2*((-3*AppellF1[5/2, 1/3, 2, 7/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x
)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/5 + (AppellF1[5/2, 4/3, 1, 7/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x
)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/5))/(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^(2/3) + (22*AppellF1[3/2, 1
/3, 1, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Tan[(c + d*x)/2]^2*(-(Sec[(c + d*x)/2]^2*Sin[c + d*x]) +
Cos[c + d*x]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(3*(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^(5/3)) - 9*Cos[(c + d*
x)/2]*Sin[(c + d*x)/2]*(-11 - AppellF1[1/2, 1/3, 1, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]/((-1 + Tan[(
c + d*x)/2]^2)*(AppellF1[1/2, 1/3, 1, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + (2*(-3*AppellF1[3/2, 1/3
, 2, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + AppellF1[3/2, 4/3, 1, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c +
d*x)/2]^2])*Tan[(c + d*x)/2]^2)/9))) + 9*Cos[(c + d*x)/2]^2*((AppellF1[1/2, 1/3, 1, 3/2, Tan[(c + d*x)/2]^2, -
Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/((-1 + Tan[(c + d*x)/2]^2)^2*(AppellF1[1/2, 1/3, 1, 3
/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + (2*(-3*AppellF1[3/2, 1/3, 2, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c +
 d*x)/2]^2] + AppellF1[3/2, 4/3, 1, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])*Tan[(c + d*x)/2]^2)/9)) - (
-1/3*(AppellF1[3/2, 1/3, 2, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])
 + (AppellF1[3/2, 4/3, 1, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/9
)/((-1 + Tan[(c + d*x)/2]^2)*(AppellF1[1/2, 1/3, 1, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + (2*(-3*App
ellF1[3/2, 1/3, 2, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + AppellF1[3/2, 4/3, 1, 5/2, Tan[(c + d*x)/2]
^2, -Tan[(c + d*x)/2]^2])*Tan[(c + d*x)/2]^2)/9)) + (AppellF1[1/2, 1/3, 1, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c +
d*x)/2]^2]*(-1/3*(AppellF1[3/2, 1/3, 2, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(
c + d*x)/2]) + (AppellF1[3/2, 4/3, 1, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c
+ d*x)/2])/9 + (2*(-3*AppellF1[3/2, 1/3, 2, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + AppellF1[3/2, 4/3,
 1, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/9 + (2*Tan[(c + d*x)/2
]^2*((-3*AppellF1[5/2, 4/3, 2, 7/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/
2])/5 + (4*AppellF1[5/2, 7/3, 1, 7/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x
)/2])/5 - 3*((-6*AppellF1[5/2, 1/3, 3, 7/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c
 + d*x)/2])/5 + (AppellF1[5/2, 4/3, 2, 7/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c
 + d*x)/2])/5)))/9))/((-1 + Tan[(c + d*x)/2]^2)*(AppellF1[1/2, 1/3, 1, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)
/2]^2] + (2*(-3*AppellF1[3/2, 1/3, 2, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + AppellF1[3/2, 4/3, 1, 5/
2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])*Tan[(c + d*x)/2]^2)/9)^2))))/(63*(Cos[(c + d*x)/2]^2*Sec[c + d*x]
)^(2/3)) + (10*2^(1/3)*Tan[(c + d*x)/2]*((-11*AppellF1[3/2, 1/3, 1, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]
^2]*Tan[(c + d*x)/2]^2)/(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^(2/3) + 9*Cos[(c + d*x)/2]^2*(-11 - AppellF1[1/2, 1/
3, 1, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2...

________________________________________________________________________________________

Maple [F]
time = 0.07, size = 0, normalized size = 0.00 \[\int \frac {\cos \left (d x +c \right )}{\left (a +a \sec \left (d x +c \right )\right )^{\frac {5}{3}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)/(a+a*sec(d*x+c))^(5/3),x)

[Out]

int(cos(d*x+c)/(a+a*sec(d*x+c))^(5/3),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+a*sec(d*x+c))^(5/3),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)/(a*sec(d*x + c) + a)^(5/3), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+a*sec(d*x+c))^(5/3),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\cos {\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {5}{3}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+a*sec(d*x+c))**(5/3),x)

[Out]

Integral(cos(c + d*x)/(a*(sec(c + d*x) + 1))**(5/3), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+a*sec(d*x+c))^(5/3),x, algorithm="giac")

[Out]

integrate(cos(d*x + c)/(a*sec(d*x + c) + a)^(5/3), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\cos \left (c+d\,x\right )}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/3}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)/(a + a/cos(c + d*x))^(5/3),x)

[Out]

int(cos(c + d*x)/(a + a/cos(c + d*x))^(5/3), x)

________________________________________________________________________________________